
Page 1/11
Page 1/11

 LLeettUUggoo vv55..00..00
Remote Socket Server Protocol Description v1.0

2013. April

Table of Contents

Introduction ..3
Brief Description of RSOSRV Communication...3
Setting Up the LetUgo Application ..4

Structure of a Message (request or response) ..4
The Header ..4

Comprehending Protocol Version Numbers ..4
The Payload ...5

Communication ...5
Message Types: Client Requests ..5

Connect ..5
Close ..6
Ping ..6
GetCarEventImage ...6

Message Types: RSOSRV Responses...7
Accept ...7
Reject ...7
Close ..7
Pong...8
CarEvent ...8
CarEventImage...9

Error Handling ..9
Appendices... 10

Examples ... 10

Page 2/11
Page 2/11

Introduction
A LetUgo Remote Socket Server protocol (hereinafter called RSOSRV or simply Server) enables a 3rd party
application to communicate with the LetUgo.
The communication is socket based (the transfer protocol is TCP/IP).

The two main directions of the communication

 The client sends a request to which the server sends a response.
 The server sends an event type message to the client without any preceding request

Brief Description of RSOSRV Communication
LetUgo.RSO_SRV is a socket server, via which one can get events and images from the LetUgo application. There is a header (9
bytes long), then an UTF-8 encoded XML segment which follows the header in a package:
 #--#
H E A D E R	XML								
00	01	02	03	04	05	06	07	08	...nn
ff	ff	00	01	00	LL	LL	LL	LL	<?xml version="1.0" encoding="UTF-8"?>...
--									
S	P	P	P	P	Abb.: - SIGNATURE : A magic number for the protocol				
I	I	M	M	L	- PID : Protocol IDentifier				
G	D	A	I	E	- PMA : Protocol MAin version number				
N				N	- PMI : Protocol MInor version number				
A				G	- PLENGTH : Length of payload (XML part)				
T				T					
U				H					
R									
E									
 #--#

 Client – Server Communication:

#--#
| |
	RSO_CLIENT	RSO_SERVER	Note
(1)	Connect --->		RSO_CLIENT_REQ
		<--- [Accept OR]	RSO_SERVER_ANSWER OR Close Socket
(2)	Ping --->		RSO_CLIENT_REQ
		<--- Pong	RSO_SERVER_ANSWER
(3)		<--- CarEvent	RSO_SERVER_EVENT
(4)	GetCarEventImage --->		RSO_CLIENT_REQ
		<--- CarEventImage	RSO_SERVER_ANSWER
(5)	Close --->		RSO_CLIENT_EVENT
			Close Socket
#--#

NOTE!

 Close Socket: socket connection closed by server.
 RSO_CLIENT will get a 'Key' at the RSO_SERVER_CONNECT_ACCEPT. This 'Key' is necessary for all further

requests. (1)
 RSO_SERVER_EVENT(s) is generated automatically by LetUgo application. (3)
 RSO_CLIENT can get the images based on 'EventFinished' and 'SpotID' values which are delivered by

CarEvent.

Page 3/11
Page 3/11

Setting Up the LetUgo Application
Parameters of the RSOSRV can be set up in the configuration file of the LetUgo (Letugo_App.exe.config). This file is
located in the LetUgo directory that is installed to following directory by default:

 In case of 32 bit operating systems: C:\Program Files\LetUgo.
 In case of 64 bit operating systems: C:\Program Files (x86)\LetUgo.

Relevant configuration values (settings are applied only after restarting LetUgo):

 RSOSRVOn: Enabling (True) or disabling (False) RSOSRV.
 RSOSRVListenerIPAddress: the RSOSRV listens on this IP address for client requests. If 0.0.0.0 is set, then the

Server listens on every IP address of the local PC.
 RSOSRVListenerPort: the RSOSRV uses the TCP port specified here for client communication.

Structure of a Message (request or response)
A message consists of two parts: header and payload.
Messages have little-endian byte order.

The Header
 #--#
H E A D E R	XML								
00	01	02	03	04	05	06	07	08	...nn
ff	ff	00	01	00	LL	LL	LL	LL	<?xml version="1.0" encoding="UTF-8"?>...
--									
S	P	P	P	P	Abb.: - SIGNATURE : A magic number for the protocol				
I	I	M	M	L	- PID : Protocol IDentifier				
G	D	A	I	E	- PMA : Protocol MAin version number				
N				N	- PMI : Protocol MInor version number				
A				G	- PLENGTH : Length of payload (XML part)				
T				T					
U				H					
R									

 #--#

| E | | | | | |

The header consists of nine bytes:

 Signature: 2-byte unsigned integer (WORD). Its value: 0xFFFF.
 PID: (protocol identifier). Currently, only the RSOSRV protocol is supported, its ID is 0.
 PMA: main version number. Main version number used at document release: 1.
 PMI: secondary (minor) version number. Secondary version number used at document release: 0.
 Payload length: 4-byte unsigned integer (DOUBLE WORD) that contains the length of payload (XML part of

message).

Comprehending Protocol Version Numbers

Secondary version number: ensures backward compatibility within the main version.
Within a new secondary version:

 New message types may appear and content of existing messages may be extended with new, optional
elements.

 Compulsory content of messages defined in previous protocol versions must not be modified. Existing
message type must not expire.

Page 4/11
Page 4/11

E.g. the LetUgo supports the 1.3 RSOSRV protocol. The client may use the 1.1, 1.2 and 1.3 protocol versions to
communicate with the server, but e.g. the 1.4, 1.5 etc. versions are not supported.

Main version number: Compatibility with the previous versions is not supported.

The Payload
The payload is always a UTF-8 encoded xml with little-endian byte order. The xml elements are case sensitive, the
order of the elements does not matter (xs:all).

Communication
The communication must be initiated by the client with a handshake that is the Connect message. In case of
successful identification, the server sends an Accept response. In every other case (invalid request, invalid user
name / password, no privilege etc.) the server terminates the socket connection immediately.

In the following cases, the server terminates the socket connection immediately, without response (the cause of
the error can be found in the LetUgo Event Log).

 The first client message was not the Connect request.

 Connect message: unsuccessful authentication or the user does not have admin privileges.

 Error in the Connect message.

 Unknown request or error in the data and there has not been successful authentication yet.

 Invalid key in the client request.

If the server receives an invalid message from the client after a successful authentication (e.g. unknown message
type), then it answers a Reject response (except: invalid key or another unsuccessful Connect call, because, in
these cases, the server terminates the connection immediately).

Message Types: Client Requests

Connect
As first message, it is the handshake. In order to establish connection, the client must send this message to the
server. The server continues the communication only in case of successful authentication; otherwise, it terminates
the connection immediately. The authentication can be successful only for LetUgo users of admin privileges. If the
user name and/or password are invalid, the server terminates the socket connection immediately. The cause of the
error is enlisted in the LetUgo log.
After a successful handshake, the client may recall a Connect function anytime (e.g. subscribing on other events or
switching user) but, in these cases, the server terminates the socket connection on any irregularity immediately –
because of security reasons.

Content:

 Origin (string): Name and address of the connecting client. Currently, it is not included in the
authentication process but is enlisted in the LetUgo log. ("RSOSRV: client connected. Origin: <Origin>.
Client: <client IP address:port>.").

 CryptedPassword (boolean): if the password is transferred in an encrypted or unencrypted way. Encrypted
passwords are not supported in the current version.

Page 5/11
Page 5/11

 LoginName (string): Login name used for LetUgo login.

 Password (string): Password of the Login name used for LetUgo login.

 EventSubscribe (string): In this string, the client specifies events to which it wants to subscribe.

 Possible values:

◦ NONE: no subscriptions.

◦ CAREVENT: subscription on vehicle entry/exit events.

Close
The client may request the connection to be terminated. After receiving such message, the server terminates the
socket connection. The client connection can be terminated without sending the Close message: by simply closing
the socket connection. In these cases, the following error message appears in the LetUgo log:

"RSOSRV data receive failed.<Error description>”.

Content:

 Key (string): Key received from the server during the handshake.

Ping
This is for verifying a connection. The server sends a Pong answer as soon as possible.

 Key (string): Key received from the server during the handshake.

GetCarEventImage
The client requests for downloading an image of a car event. The EventFinished and the SpotID together
determine the event while the ImageIndex identifies the image of it.

Content:

- Key (string): Key received from the server during the handshake.

- EventFinished (dateTime): Ending date and time of the event (e.g. content of the CarEvent’s EventFinished
element.

- SpotID (int): ID of the event’s access point (e.g. content of the CarEvent’s SpotID element).

- TransactionID (string): Identifier generated by the client. The server returns the same value in the response;
this is for parsing the request and the response easily.

- ImageIndex (int): identifies the image within the event. Possible values:

- 0: ANPR camera image.

- 1: Image of the first overview camera.

- 2: Image of the second overview camera.

- 3: Image of the third overview camera.

Possible server responses:

 CarEventImage: response to the request, it contains the relevant image.

 Reject: event not found or the value of the ImageIndex is invalid.

Page 6/11
Page 6/11

a. If the event is not found then the value of the RejectCode will be 4.

b. If the ImageIndex is invalid then the value of the RejectCode will be 5. E.g. only one overview
camera image belongs to the access point but the client has sent a request with ImageIndex = 2.

NOTE: Every event has ANPR camera image.

Message Types: RSOSRV Responses

Accept
The server sends it on the Connect request, if the authentication was successful.

Content:

 Key (string): the server provides a unique key. The client has to use this key in every future message. If the
key is invalid, the server terminates the socket connection immediately.

Reject
After a successful authentication, if the server receives an invalid message from the client (unknown message
type), it answers a Reject response.

Content:

 Key (string): unique key specified in the Accept message.

 RejectCode (int): code of the error:

◦ 1: other error. Detailed error description can be found in the Reason.

◦ 2: a request that is unknown, not defined in the protocol has been received

◦ 3: invalid request arrived

◦ 4: event not found

◦ 5: invalid parameter: ImageIndex

◦ 6: reserved for future use

◦ 7: reserved for future use

◦ 8: reserved for future use

◦ 9: reserved for future use

◦ Reason (string): Textual description of the error cause.

Close
On closing the LetUgo application, the server sends a Close message to successfully logged in client(s) then
terminates the connection 50ms later.

Content:

 Key (string): unique key specified in the Accept message.

Page 7/11
Page 7/11

Pong
It is a response to the client’s ping request. The server forwards it as soon as possible.

Content:

 Key (string): unique key specified in the Accept message.

CarEvent
It is a vehicle entry/exit event. The client receives it only if it has been subscribed to this event in the Connect
message.
Content:

 Key (string): unique key specified in the Accept message.

 EventType (string): type of the event. Possible values:

◦ UNAUTHORIZED: unauthorized, automatic entry/exit

◦ BACKINGUP: backing up event.

◦ MOVE: authorized entry/exit if no camera direction is specified

◦ MOVEIN: authorized drive in.

◦ MOVEOUT: authorized drive out.

◦ BLACKLISTEDIN: blacklisted drive in.

◦ BLACKLISTEDOUT: blacklisted drive out.

◦ BLACKLISTED: blacklisted drive through, if no camera direction is specified

◦ HANDOPENIN: unauthorized, manual drive in

◦ HANDOPENOUT: unauthorized, manual drive out

◦ HANDOPEN: unauthorized, manual open, if no camera direction is specified

 EventStarted (dateTime): Starting date and time of the event when the vehicle has arrived to the entry/exit
point.

 EventFinished (dateTime): Date and time of the event when the vehicle has left the entry/exit point.

 SpotID (int): Unique ID of the access point.

 SpotName (string): name of the access point.

 Operator (string): name of the operator (it is not the login name). If there is no operator logged in, it is an
empty string.

 NumberPlate (string): the recognized number plate.

 CorrectedNumberPlate (string): number plate modified by the operator. If the operator has not made any
modifications, it is an empty string.

 Direction (string): direction of the observed lane.

◦ IN: drive in

◦ OUT: drive out

◦ UNDEFINED: camera direction is not defined

 BlackListed (boolean): it is true if the vehicle is on the blacklist.

Page 8/11
Page 8/11

 Permitted (boolean): it is true if the vehicle has permission.

 ParkingFee (long): amount of parking charge. It is defined only at drive out for vehicles having no
permission. Otherwise, its value is -1.

 TimeSpentIn (long): time spent by vehicles with permission (in minutes). It is defined only at drive out (in
case of backing up, it is -1)

CarEventImage
Response to the client’s GetCarEventImage request.

Content:

- Key (string): Key received from the server during the handshake.

- EventFinished (dateTime): Relevant value of the client request.

- SpotID (int): Relevant value of the client request.

- TransactionID (string): Identifier generated by the client for parsing the request and the response easily.

- ImageIndex (int): Relevant value of the client request.

- Image (base64Binary): base64 encoded JPEG image of the car event.

Error Handling
Every error is enlisted in the LetUgo log. Error messages related to the RSOSRV always contain the RSOSRV word.

Page 9/11
Page 9/11

Appendices

Examples

Example: memory map of a Connect request:

(The header is marked with a red rectangle.)

 Signature: 0xFF (offset 00 – 01).
 Protocol identifier: 0x00 (offset 02).
 Protocol main version number: 0x01 (offset 03).
 Protocol secondary version number: 0x00 (offset 04).
 Length of payload: 0x0152 (offset 05 – 08).
 Payload: offset 09 – 015A

Page 10/11
Page 10/11

Page 11/11
Page 11/11

Example:
Connect request xml:

<?xml version="1.0" encoding="UTF-8"?>
<Connect xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="connect.xsd">
 <Origin>TestClient igin> </Or
 <CryptedPas false</CryptedPassword> sword>
 <LoginName testuser</LoginName> >
 <Password> testuser Password> pwd</
 <EventSubscribe>CAREVENT</EventSubscribe>
</Connect>

Example: GetCarEventImage request xml:

<?xml version="1.0" encoding="UTF-8"?>
<GetCarEventImage xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="getcareventimage.xsd">
 <Key>42930b66-6e30-4d8d-ba4b-9d175607a755 </Key>
 <EventFinished>2012-01-01T11:48:13.0056789+02:00</EventFinished>
 <SpotID>1</SpotID>
 <ImageIndex>0</ImageIndex>
 <TransactionID>Tr0001</TransactionID>
</GetCarEventImage>

	The Header
	Comprehending Protocol Version Numbers

	The Payload
	Communication
	Message Types: Client Requests
	Connect
	Close
	Ping
	GetCarEventImage

	Message Types: RSOSRV Responses
	Accept
	Reject
	Close
	Pong
	CarEvent
	CarEventImage

	Error Handling
	Appendices
	Examples

